Un estudio exploratorio sobre el impacto del neuromarketing en entornos virtuales de aprendizaje
Contenido principal del artículo
Resumen
El neuromarketing es un tópico fundamental en el mundo tecnológico actual y ha experimentado un crecimiento explosivo en los últimos años como herramienta de la comunicación. Últimamente, las asignaturas de neuromarketing han mejorado mucho cuando la enseñanza está respaldada por cursos y experimentos de laboratorio siguiendo el paradigma de "aprender haciendo", que proporciona a los estudiantes una comprensión más profunda de su aprendizaje. Sin embargo, muchos programas educativos no enseñan a los estudiantes sobre el uso y las aplicaciones del neuromarketing. Bajo el supuesto de que los avances en neuromarketing cambiarán las prácticas tradicionales en el aula, el objetivo de este trabajo es proponer una combinación de tecnologías para convertir un proyecto de neuromarketing en una actividad de laboratorio, haciendo que este sea más atractivo para los estudiantes al mejorar la aplicación de los planes de estudio en postgrados de administración de empresas. Este proyecto ha sido evaluado con éxito sobre la base de respuestas a cuestionarios de estudiantes y expertos que calificaron positivamente la actividad de laboratorio, encontrando el aprendizaje como muy bueno y/o excelente, alcanzándose además buenos resultados académicas. En el contexto específico de una universidad privada virtual, este trabajo se orientó al diseño de un taller de neuromarketing para desarrollar determinadas competencias genéricas en la mejora de los procesos educativos en las universidades. Los hallazgos de esta investigación resultan relevantes en las decisiones de política educativa, pero también en la teoría y práctica pedagógica en el ámbito de este estudio.
Descargas
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Aviso de derechos de autor
El autor principal debe entregar obligatoriamente la carta de cesión de derecho de autoría, según el modelo dispuesto por Vivat Academia. Revista de Comunicación en la que se declara la cesión de derechos de autoría a la revista y se hacen explicitos los derechos de los autores respecto a la difusión y explotación del manuscrito una vez publicado.
Citas
Asrar-ul-Haq, M., Anwar, S. y Hassan, M. (2017). Impact of emotional intelligence on teacher׳s performance in higher education institutions of Pakistan. Future Business Journal, 3(2), 87-97; http://dx.doi.org/10.1016/j.fbj.2017.05.003
Avinash, T., Dikshant, L. y Seema, S. (2018). Methods of Neuromarketing and Implication of the Frontal Theta Asymmetry induced due to musical stimulus as choice modeling. Procedia Computer Science, 132, 55-67, https://doi.org/10.1016/j.procs.2018.05.059
Blömeke, S. y Olsen, R. V. (2019). Consistency of results regarding teacher effects across subjects, school levels, outcomes and countries. Teaching and Teacher Education, 77, 170-182. https://doi.org/10.1016/j.tate.2018.09.018
Casado-Aranda, L-A., Dimoka, A. y Sánchez-Fernández, J. (2019). Consumer Processing of Online Trust Signals: A Neuroimaging Study. Journal of Interactive Marketing, 47, 159-180. https://doi.org/10.1016/j.intmar.2019.02.006
Cerdá, L. M. (2016). Happiness in teaching: positive emotions for evaluating the relationship between leadership style and performance of the professor in the classroom. En Proceedings of 10th annual International Technology, Education and Development Conference INTED 2016. Valencia, March, 1396-1405.
Chen, J. (2016). Understanding teacher emotions: The development of a teacher emotion inventory. Teaching and Teacher Education, 55, 68–77.
Chihiro Watanabe, C., Naveed, K. y Neittaanmäki, P. (2017). Co-evolution between trust in teachers and higher education toward digitally-rich learning environments. 48, 70-96https://doi.org:10.1016/j.techsoc.2016.11.001.
Dirican, C. (2015). The Impacts of Robotics, Artificial Intelligence on Business and Economics. Procedia - Social and Behavioral Sciences, 195, 564-573; https://doi.org/10.1016/j.sbspro.2015.06.134
Folwarczny, M., Pawar, S., Sigurdsson, V. y Fagerstrøm, A. (2019). Using neuro-IS/consumer neuroscience tools to study healthy food choices: a review. Procedia Computer Science, 164, 532-537. https://doi.org/10.1016/j.procs.2019.12.216
Golnar-Nik, P., Farashi, S. y Safari, M.-S. (2019). The application of EEG power for the prediction and interpretation of consumer decision-making: A neuromarketing study. Physiology & Behavior 207, 90-98 https://doi.org/10.1016/j.physbeh.2019.04.025
Granziera, H. y Perera. H. N. (2019). Relations among teachers’ self-efficacy beliefs, engagement, and work satisfaction: A social cognitive view. Contemporary Educational Psychology, 58, 75-84. http://dx.doi.org/10.1016/j.cedpsych.2019.02.003
Gutiérrez, G. (2019). Neuromarketing as an effective tool for education in sales and advertising. Revista Latina de Comunicación Social, 74, 1173-1189. https:// dx.doi.org/10.4185/RLCS-2019-1377
Jang, H.-R. (2019). Teachers' intrinsic vs. extrinsic instructional goals predict their classroom motivating styles. Learning and Instruction, 60, 286-300; https://doi.org/10.1016/j.learninstruc.2017.11.001
Kaklauskas, A., Abraham, A., Dzemyda, G., Raslanas, S., Seniut, M., Ubarte, I., Kurasova, O., Binkyte-Veliene, A. y Cerkauskas, J. (2020). Emotional, affective and biometrical states analytics of a built environment. Engineering Applications of Artificial Intelligence. 91, 103621. https://doi.org/10.1016/j.engappai.2020.103621
Karakus, O., Howard-Jones, P. A. y Jay, T. (2015). Primary and Secondary School Teachers’ Knowledge and Misconceptions about the Brain in Turkey. Procedia - Social and Behavioral Sciences, 174, 1933-1940. https://doi.org/10.1016/j.sbspro.2015.01.858
Luiz, I., Annukka Kim Lindell, A. K. y Ekuni, R. (2020). Neurophilia is stronger for educators than students in Brazil. Trends in Neuroscience and Education, 20, 100136. https://doi.org/10.1016/j.tine.2020.100136
Mañas-Viniegra, L., Núñez-Gómez, P. y Tur-Viñes, V. (2020). Neuromarketing as a strategic tool for predicting how Instagramers have an influence on the personal identity of adolescents and young people in Spain. Heliyon, 6, (3), e03578. https://doi:10.1016/j.heliyon.2020.e03578
Moghadam, S. M. y Seyyedsalehi, S. A. (2018). Nonlinear analysis and synthesis of video images using deep dynamic bottleneck neural networks for face recognition. Neural Networks, 105, 304-315. https://doi.org/10.1016/j.neunet.2018.05.016
Nussbaum, P. A., Herrera, A., Joshi, R. y Hargraves, R. (2012). Analysis of Viewer EEG Data to Determine Categorization of Short Video Clip. Procedia Computer Science, 158-163. http://doi.org:10.1016/j.procs.2012.09.047
Papanastasiou, G., Drigas, A., Skianis, C. y Lytras, M. (2020). Brain computer interface based applications for training and rehabilitation of students with neurodevelopmental disorders. A literature review. Heliyon, 6(9), e04250; https://doi.org/10.1016/j.heliyon.2020.e04250
Salehzadeh, A., Calitz, A. P. y Greyling, J. (2020). Human activity recognition using deep electroencephalography learning. Biomedical Signal Processing and Control, 62, 102094; https://doi.org/10.1016/j.bspc.2020.102094
Seligman, M., Ernstb, R., Gillhamc, J., Reivicha, K y Linkins, M. (2009). Positive education: positive psychology and classroom interventions. Oxford Review of Education, 35(3), 293-311. https://doi.org/10.1080/03054980902934563
Siddiqui, N., Gorard, S. y See, B. H. (2019). Can learning beyond the classroom impact on social responsibility and academic attainment? An evaluation of the Children’s University youth social action programme. Studies in Educational Evaluation, 61, 74-82. http://doi.org:10.1016/j.stueduc.2019.03.004
Tshewang, R., Chandra, V. y Yeh, A. (2016). Students’ and teachers’ perceptions of classroom learning environment in Bhutanese eighth-grade mathematics classes. Learning Environments Research, 1(1), 1-20. https://doi.org/10.1007/s10984-016-9225-6
Wang, C.-C. y Hsu, M.-C. (2014). An exploratory study using inexpensive electroencephalography (EEG) to understand flow experience in computer-based instruction. Information & Management, 51(7), 912-923. https://doi.org/10.1016/j.im.2014.05.010
Zhang, J., Yin, Z., Chen, P. y Nichele, S. (2020). Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review. Information Fusion, 59, 103-126. https://doi.org:10.1016/j.inffus.2020.01.011