Audit 2.0, a perspective for its execution in the business environment using process mining techniques
Main Article Content
Abstract
Business management needs the development of methods and instruments to establish and improve the performance standards of organizations. An important point is the audit, which allows validating information and business processes. In the Cuban business environment, the execution of audits shows a low level of exploitation of information and communication technologies, which limits the work of the auditors and the follow-up and control actions. The current practices are based on samples, which inevitably provide an incomplete view of the execution of the process, which are usually done manually; consume a lot of time, as well as human and financial resources. The objective of this work is to highlight the benefits of the analysis of the information available in the registers of events of the computer systems, using techniques of Process Mining as a new form of audit. The automation of the audit reduces the corresponding transaction costs, while improving its quality and accuracy, as the case studies analyzed show.
Downloads
Article Details
The main author must deliver the letter of transfer of copyright, according to the model provided by Vivat Academia, Revista de comunicación, which declares the transfer of copyright to the journal and make explicit the rights of authors regarding the dissemination and use of the manuscript once published.
Creative Commons Attribution/Non Commercial 4.0 International
References
Acosta Palmer, H. y Troncoso Fleitas, M. (2011). Auditoría integral de mantenimiento en instalaciones hospitalarias, un análisis objetivo. Ingeniería Mecánica, 14(2), 107-118.
Aguirre Mayorga, H. y Rincón García, N. (2015). Minería de procesos: desarrollo, aplicaciones y factores críticos. Cuadernos de Administración, 28(50), 137-157.
de Medeiros, A., Weijters, A. J. & Van der Aalst, W. (2007). Genetic process mining: an experimental evaluation. Data Mining and Knowledge Discovery, 14(2), 245-304. doi: https://doi.org/10.1007/s10618-006-0061-7
de Medeiros, A., Dongen, V. B., Van der Aalst, W. & Weijters, A. (2004). Process mining: extending the alpha-algorithm to mine short loops. Technische Universiteit Eindhoven.
De Weerdt, J., Schupp, A., Vanderloock, A. & Baesens, B. (2013). Process Mining for the multi-faceted analysis of business processes - A case study in a financial services organization. Computers in Industry, 64(1), 57-67.
Delgado Pérez, E. (2002). Metodología para la realización del diagnóstico de la Gestión de los Recursos Humanos en empresas en Perfeccionamiento Empresarial. (Tesis inédita de maestría). Universidad de Holguín: Oscar Lucero Moya, Holguín, Cuba.
Escobar Rivera, D., Moreno Pino, M. y Cuevas Rodríguez, L. (2016). La calidad de la auditoría en Sistemas de Gestión. Software AUDIT_INTEGRATED. Ciencias Holguín, 22(2), 77-93.
Fischer, M. (2008). ARIS Process Performance Manager. 14th GI/ITG Conference-Measurement, Modelling and Evalutation of Computer and Communication Systems, 1-3.
Gallegos, F. & Carlin, A. (2007). IT Audit: A Critical Business Process. Computer, 40(7), 87-9.
Goñi Camejo, I. (2008). El qué y el cómo del diagnóstico del sistema de información gerencial. ACIMED, 17(5), 1-19.
Günther, C. & Van der Aalst, W. (2007). Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics. Business Process Management, 328-343. Recuperado de: https://link.springer.com/chapter/10.1007/978-3-540-75183-0_24
Jans, A. M. & MA, V. (2014). A Field Study on the Use of Process Mining of Event Logs as an Analytical Procedure in Auditing. Accounting Review, 89(5), 1751-1773.
Jans, M., Alles, M. & Vasarhelyi, M. (2012). Process mining of event logs in internal auditing: a case study. Recuperado de
https://uhdspace.uhasselt.be/dspace/handle/1942/14227
Jans, M., Alles, M. & Vasarhelyi, M. (2014). A Field Study on the Use of Process Mining of Event Logs as an Analytical Procedure in Auditing. Accounting Review, 89(5), 1751-1773.
Karapetrovi, S., Casadesus, M. & Heras, I. (2010). Empirical analysis of integration within the standards-based integrated management systems. Int J Qual Res, 4(1), 25-35.
Laboratories Fluxicon Process. (2017). Process Mining and Automated Process Discovery Software for Professionals - Fluxicon Disco. Recuperado de: https://fluxicon.com/disco/
Process Mining Group, E. T. (2010). ProM 6 tutorial. Recuperado de: http://www.promtools.org/doku.php?id=tutorial:start
QPR Software Oyj. (2017). QPR ProcessAnalyzer. Recuperado de: https://www.qpr.com/node/4
Ramírez Pérez, J. (2016). Modelo para la selección de equipos de trabajo quirúrgico en sistemas de información en salud aplicando técnicas de inteligencia organizacional. (Tesis inédita de doctorado). Universidad de las Ciencias Informáticas, La Habana, Cuba.
Sayana SA. (2003). Using CAATs to Support IS Audit. Inf Syst Control J. Recuperado de http://csbweb01.uncw.edu/people/IvancevichD/classes/MSA%20516/Extra%20Readings%20on%20Topics/CAATS/Supplemental%20Reading%20Week%208/Using%20CAATTS%20to%20Support%20IT%20Audit.pdf
Sotolongo Sánchez, M. (2005). Procedimiento para la auditoria interna del Sistema de Gestión de Recursos Humanos en instalaciones turísticas hoteleras cubanas. Aplicación en pequeñas y medianas instalaciones turísticas hoteleras. (Tesis inédita de doctorado). Universidad Marta Abreu de Las Villas, Santa Clara, Villa Clara, Cuba.
Stocker T, R. & Müller, G. (2013). On the Exploitation of Process Mining for Security Audits: The Process Discovery Case. Proceedings of the 28th Annual ACM Symposium on Applied Computing, (pp. 1462-1468). Recuperado de http://doi.acm.org/10.1145/2480362.2480634
Van der Aalst, W. (2011). Do Petri Nets Provide the Right Representational Bias for Process Mining? ART@ Petri Nets, (pp. 85-94). Newcastle upon Tyne, UK: J. Desel & A. Yakovlev.
Van der Aalst, W. (2011). Process Mining. Discovery, Conformance and Enhancement of Business Processes, (pp. 85-94). Springer-Verlag Berlin Heidelberg.
Van der Aalst, W. (2016). Process Mining: Data Science in Action, (477). Springer.
Van der Aalst, W. & Van Dongen, B. (2002). Discovering Workflow Performance Models from Timed Logs. Van der Aalst, W., & Van Dongen, B. (2002). Discovering Workflow Performance Models from Timed Logs. Engineering and Deployment of Cooperative Information Systems, (pp. 45-63). Recuperado de http://link.springer.com/chapter/10.1007/3-540-45785-2_4
Van der Aalst, W. & Weijters T, M. L. (2004). Workflow mining: discovering process models from event logs. IEEE Trans Knowl Data Eng, 16(9), 1128-1142.
Van der Aalst, W., Adriansyah, A., de Medeiros, A., Arcieri, F., Baier, T. & Blickle, T. (2011). Process Mining Manifesto. Business Process Management Workshops, 169-194. Recuperado de https://link.springer.com/chapter/10.1007/978-3-642-28108-2_19
Van der Aalst, W., Reijers, H., Weijters, A., Van Dongen, B., de Medeiros, A. S., et al. (2007). Business process mining: An industrial application. Information Systems, 32(5), 713-732. doi: http://doi.acm.org/10.1016/j.is.2006.05.003
Van der Aalst, W., van Hee, K., van Werf, J. & Verdonk, M. (2010). Auditing 2.0: Using Process Mining to Support Tomorrow’s Auditor. Computer, 43(3), 90-93.
Weijters, A. & Ribeiro, J. (2011). Flexible Heuristics Miner (FHM). IEEE Symposium on Computational Intelligence and Data Mining (CIDM), 310.
Werner, M. (2016). Process Model Representation Layers for Financial Audits. 49th Hawaii International Conference on System Sciences (HICSS), (pp. 5338-5347). USA.
Werner, M. & Gehrke, N. (2015). Multilevel Process Mining for Financial Audits. IEEE Trans Serv Comput, 8(6), 820-832.
Yzquierdo Herrera, R. (2013). Minería de proceso como herramienta para la auditoria. Ciencias de la Información, 44(2), 25-32.